
1

Performance Assessment of IEEE 802.11p
with an Open Source SDR-based Prototype

Bastian Bloessl Student Member, IEEE , Michele Segata Member, IEEE ,
Christoph Sommer Member, IEEE , Falko Dressler Fellow, IEEE

Abstract—We present a complete simulation and experimentation framework for IEEE 802.11p. The core of the framework is an
SDR-based OFDM transceiver that we validated extensively by means of simulations, interoperability tests, and, ultimately, by conducting
a field test. Being SDR-based, the transceiver offers important benefits: It provides access to all data down to and including the physical
layer, allowing for a better understanding of the system. Based on open and programmable hardware and software, the transceiver is
completely transparent and all implementation details can be studied and, if needed, modified. Finally, it enables a seamless switch
between simulations and experiments and, thus, helps to bridge the gap between theory and practice. Comparing the transceiver’s
performance with independent results from simulations and experiments, we underline its potential to be used as a tool for further studies
of IEEE 802.11p networks both in field operational tests as well as for simulation-based development of novel physical layer solutions. To
make the framework accessible to fellow researchers and to allow reproduction of the results, we released it under an Open Source
license.

Index Terms—Vehicular Ad Hoc Network, Software Defined Radio, GNU Radio, Wireless LAN

F

1 INTRODUCTION

VANETs describe the vision of cars communicating directly
with each other and potentially with infrastructure nodes,
creating a network of connected cars. Communication
allows vehicles to cooperate and form what is commonly
referred to as an Intelligent Transportation System (ITS).
Once established, these networks can be the enabler for
many applications that promise to increase road traffic safety,
efficiency, and comfort, while decreasing fuel consumption
and, thus, CO2 emissions [5]. Today, VANETs are close
to become reality, as engineers in Europe, as well as in
the US and Japan, are finalizing relevant standards. Well-
known examples are ETSI ITS-G5, IEEE DSRC/WAVE, and
ARIB T109 which are defined for Europe, the US, and Japan,
respectively. To foster the introduction of VANETs, the
regulatory bodies of Europe and the US already reserved
frequencies in the 5.9 GHz band for exclusive use.

While Japan took a different approach, ETSI ITS-G5 and
IEEE DSRC/WAVE build on the same access technology.
Both rely on IEEE 802.11p [6], a physical and MAC layer for
use in vehicular environments. Based on OFDM, the physical
layer of IEEE 802.11p is similar to IEEE 802.11a/g, except that
all timings are doubled. This reduces the bandwidth from
20 MHz to 10 MHz and doubles the guard interval, which
makes the signal more robust against delay spread. On MAC
layer, IEEE 802.11p introduces the Outside the Context of a
BSS (OCB) mode (formerly named WAVE mode to reflect its

• B. Bloessl, C. Sommer, and F. Dressler are with the Heinz Nixdorf Institute
and the Dept. of Computer Science, Paderborn University, Germany, E-
mail: {bloessl,sommer,dressler}@ccs-labs.org

• M. Segata is with the University of Trento, Italy, E-Mail:
msegata@disi.unitn.it

The manuscript is based on earlier work on the implementation and evaluation
of an SDR-based IEEE 802.11a/g/p transceiver that was presented in [1]–[4].

origins in the IEEE DSRC/WAVE standard), which allows
cars to communication directly without prior connection
setup. Finally, IEEE 802.11p mandates the use of the Quality
of Service (QoS) extensions, first defined in IEEE 802.11e.

The decision to rely on Wireless LAN (WLAN) as a
base and, thus, to use readily available technology can ease
market introduction, but can also lead to doubts whether a
physical layer that was designed for relatively static indoor
environments is able to cope with the dynamics of VANETs.
The relevance of the question regarding the performance
of IEEE 802.11p in fast-fading channels is reflected by a
large body of literature [7]–[10]. To study the physical
layer, researchers often rely on simulators that model IEEE
802.11p at signal level, considering channel effects on the
electromagnetic waveform [8], [11]–[13], or on hardware
prototypes for experiments in the lab and on the road [14]–
[16]. Both approaches are, however, limited to their domain
only, i.e., it is not possible to switch from simulations to
experiments. As a consequence, there is no easy way to
validate and test findings from simulation studies through
experiments or vice versa.

To overcome this limitation, we propose an SDR-based
approach. SDRs are programmable radios that provide access
to all data down to the physical waveform, allowing to
implement all signal processing in software. This aspect
makes them particularly well suited to build early prototype
transceivers and to experiment with novel signal processing
algorithms. The general concept of SDR is also interesting
for car manufacturers, as the relatively long life-cycle of
a vehicle asks for hardware that can be adapted to future
changes to the standards. To show the feasibility of the
idea and to foster the use of SDRs for VANET research,
we developed a complete IEEE 802.11p transceiver and
released it under an Open Source license. In this paper,
we detail its implementation, show how we validated it



2

through simulations and interoperability test with IEEE
802.11p prototypes, and finally show its applicability for
experiments on the road by conducting a field test.

With our SDR transceiver, signal processing is imple-
mented in software on a normal PC, making it particularly
easy to use, modify, and debug. While we also investigate
standard compliant channel access for broadcast transmis-
sions, the main application domain of the transceiver is
clearly the physical layer. In contrast to existing approaches,
the major advantage is that the software implementation is
decoupled from the radio frontend. This and the fact that the
transceiver works with cheap, open, and widely used radio
hardware makes the system accessible to fellow researchers.
Since the physical layer of our SDR transceiver is imple-
mented completely in software, new physical layer concepts
can easily be implemented and tested. Furthermore, this also
allows to use our transceiver for simulations too, enabling
studies of IEEE 802.11p and novel variants in reproducible
configurations. The ability to use the same tool for both
simulations and experiments allows for a seamless switch
between theory and practice and presents a big advantage of
the proposed approach.

2 RELATED WORK

Given their decentralized and dynamic nature, VANETs
are particularly challenging to design. Even when limiting
the focus to networking aspects only, there are many open
questions ranging from application layer performance, down
to propagation characteristics of the physical signal. Besides
analytical models, which are beyond the scope of this
work, researchers rely on simulations and increasingly on
experiments to study those networks [17].

Simulations are often the first choice as they are easy to
conduct and allow investigating VANETs in a reproducible
manner. As a first type of simulator, dedicated physical
layer simulators are tuned towards studying channel effects,
interference, and signal processing algorithms. Here, most
researchers rely on custom, unpublished implementations
using a scripting language like MATLAB [8], [12], [13].
While the level of detail is the same as with an SDR, these
simulators do not allow for real-time operation. Furthermore,
simplifying assumptions have to be made in these models
that may hide certain aspects in practice. The second type
focuses on macro-scale network simulations. To capture
unique characteristics of vehicular networks and to produce
realistic results, researchers couple traffic simulators with
network simulators bidirectionally. Well-known examples
for such simulators are Veins, iTetris, and VSimRTI [18].
Focusing on larger scenarios, they lend themselves for
investigating the MAC layer and the layers above. For
performance reasons, these simulators usually employ simple
channel and error rate models. There is, however, also the
idea to model the physical layer on signal level [11] and,
thus, to combine physical layer and network layer simulators.
In fact, our initial SDR implementation has already been
integrated into Veins by an independent group [19]. Finally,
trace-based input modeling can be used. Such an approach to
realistic VANET simulations was presented in [9], where the
authors recorded raw signal samples in a field tests, which
were later used for offline, trace-driven simulations. The

downside of this method is, however, that it produces large
amounts of data. Following Nyquist’s sampling theorem,
a 10 MHz channel leads to, at least, 10× 106 complex base
band samples per second. Furthermore, as the receiver does
not decode the data live, it cannot be part of the VANET,
but is limited to passive measurements only. Our approach
has the prime advantage that the same code can be used
for simulations and experiments, thus, offering a seamless
switch between theory and practice.

Apart from simulations, experiments can provide valu-
able insights. Field tests are particularly important as they
show the performance of a real system and reveal potential
weaknesses in system design. Today, many experiments
are conducted with dedicated IEEE 802.11p prototypes from
companies like Cohda Wireless [20], NEC [21], [22], and
Denso [23]. These devices provide complete communication
stacks for IEEE DSRC/WAVE or ETSI ITS-G5 and are,
therefore, well suited for testing VANET applications. Apart
from dedicated prototypes, it is possible to modify certain
off-the-shelf WLAN cards to operate in IEEE 802.11p mode.
UNEX DCMA-86P2 cards, for example, are based on an
Atheros chipset and were used in many experiments [14]–
[16], [24]. Recently, the Linux kernel added IEEE 802.11p
support to the Atheros ath9k driver. Together with Open
Source implementations of VANET communication stacks,
like OpenC2X [25], these WLAN cards can be used to build
cheap and nearly feature-complete prototypes.

While both custom and commercial prototypes are well
suited to test VANET applications, they share a common
limitation in that they provide very limited access to the
physical layer. This limitation can be overcome using SDR.
Implementing the whole signal processing in software, SDRs
allow us to study, and if needed modify, all implementation
details. Furthermore, they operate on the physical signal
and, thus, provide access to all data, allowing for a better
understanding of the system.

There are several SDR platforms available, which can
be differentiated based on how the physical layer is im-
plemented. The two most popular variants are Field-
Programmable Gate Array (FPGA)-based and General Pur-
pose Processor (GPP)-based SDRs. The WARP board is a well-
known example of the first type [26]. Mango Communica-
tions, the vendors of WARP, provide a free-to-use IEEE 802.11
reference design that seems well suited for VANET research.
Another FPGA prototype was recently introduced in [27],
where the authors demonstrate IEEE 802.11p transmission
using National Instruments USRP-RIOs and LabView. While
LabView offers a workflow that allows configuration and
modification of the FPGA design using a graphical interface,
it also comes with large licensing fees.

The main advantages of FPGA-based SDRs are their
deterministic timing and low latency, which allows them to
meet the tough timing constraints of today’s communication
standards. Therefore, if time-critical MAC layer algorithms
or higher layer protocols are subject of the study, FPGAs are
often the first choice. The drawback of these architectures is
their price and their limited flexibility, especially with regard
to the physical layer. While, they are fully reprogrammable
in theory, it is, in practice, often challenging to implement
complex signal processing algorithms on FPGAs.

Rapid-prototyping and physical layer experimentation



3

Figure 1. Overview of the transceiver’s structure (left and center) and its graphical user interface while receiving 16-QAM frames (right).

are application areas where GPP-based SDRs are particularly
well suited. Using GPP-based SDRs, the physical layer is
implemented on a normal PC, often in a high-level program-
ming language like C++ or Python. Compared to hardware
description languages like VHDL or Verilog, which are
often used with FPGAs, these high-level languages are more
accessible as they are easier to write, compile, and test [28].
An additional benefit of PC implementations is that they
are not limited to experiments only. By connecting sender
and receiver in software, they can be used for simulations,
allowing for an easy switch between theory and practice.

Popular GPP-based platforms are Microsoft’s Sora and
GNU Radio together with Universal Software Radio Peripher-
als (USRPs) from Ettus Research. For GNU Radio, there was
no IEEE 802.11a/g/p transceiver available prior to this work
(only an IEEE 802.11b transceiver [29], which is based on
the very different Direct-Sequence Spread Spectrum (DSSS)
physical layer). Microsoft, in turn, presented Sora together
with SoftWiFi, an IEEE 802.11a/b/g implementation [30].
While both our transceiver and Sora rely on a GPP-based
architecture, they focus on very different aspects.

Sora uses sophisticated hardware-software co-design that
demonstrates what a highly optimized GPP architecture is
able to achieve. In particular, Sora manages to reduce latency
enough to extend standard compliance from the physical
layer up to the MAC, allowing for unicast communication
with commercial WLAN cards. These impressive results
are possible by using a custom hardware control board that
connects to the PC via PCIe, a high throughput and low-
latency bus. On software side, Sora uses operating system
specific optimizations to boost performance. Among others,
Sora makes heavy use of look-up tables and employs a static
scheduling scheme that distributes signal processing tasks
manually between cores. To optimize data exchange between
CPU cores, Sora uses special FIFO buffers that minimize
synchronization overhead.

While Sora shows the potential of hardware-software
co-design, it was a deliberate decision to use a different
approach for our transceiver. We go without hardware and
operating system specific optimizations and, therefore, trade
off latency for a more accessible implementation that is not

strictly tight to a particular platform. While we also explore
the possibility to extend our implementation with standard
compliant channel access for broadcast transmissions (i.e.,
the case where we do not have to meet the timing constraints
of acknowledgment frames), our focus is clearly to provide
a modular and easy to adapt physical layer implementation
that lends itself well to rapid prototyping. Using GNU Radio,
we can benefit from an active community and a large
ecosystem, which provides us with a graphical editor to
configure our transceiver, graphical outputs that visualize
the signal live, and a wide variety of supported SDR radio
frontends. Furthermore, our transceiver can be used on
macOS and Linux and runs on many hardware platforms,
including even ARM-based embedded devices. In contrast
to Sora, it is, therefore, not limited to desktop PCs, making it
a particularly interesting option for field tests.

To summarize, its biggest strengths are clearly the use
of accessible software and hardware as well as the ability to
run in simulation mode to experiment with new physical
layer concepts in well-defined and repeatable scenarios. In
the academic context, the most notable SDRs platforms
that have been successfully tested with our transceiver are
USRPs from Ettus Research, the HackRF, and the BladeRF.
Overall, our transceiver is not tightly bound to a particular
platform and focuses on providing a modular and easy to
adapt implementation that is compatible with many radio
frontends.

3 CONCEPT AND IMPLEMENTATION

Given the advantages of GPP-based architectures, we devel-
oped an IEEE 802.11p transceiver using GNU Radio [31], an
Open Source real-time signal processing framework. For our
implementation, we did not invent new signal processing
algorithms, but used readily available and widely used
algorithms to create a modular, easy to use, and easy to adapt
transceiver that forms a solid base for research on VANETs.
Even preliminary versions of our transceiver proved to be
useful in many different contexts. For example, in studies on
channel estimation algorithms for VANETs [32], [33], studies
on location privacy in VANETs [34], and studies on the
computational complexity of the transceiver [35].



4

time

S S S S S S S S S S L1/2 L L Signal Data Data ...
Short Training Sequence Long Training Sequence

Figure 2. Overview of the WLAN frame structure. Each frame starts with a short and a long training sequence for synchronization, followed by the
signal field, containing information about the length and encoding of the frame, and the data symbols, carrying the actual payload.

3.1 Overview
Similar to LabView and Simulink, GNU Radio is, at its core, a
signal processing system for data streams. This architecture
is very natural for SDRs, where the hardware produces a
constant stream of complex baseband samples. To process the
data, the sample stream is piped through signal processing
blocks that implement actual functionality. With GNU Radio,
such signal processing system is described by a flow graph,
a data structure that defines how blocks are parameterized
and connected.

A small part of our transceiver flow graph is depicted
on the left hand side of Figure 1. The screenshot shows
the transceiver in GNU Radio Companion, a graphical user
interface that eases the creation and configuration of flow
graphs. While the detailed functionality is not important at
this point, the figure gives an idea of GNU Radio’s stream
paradigm; the signal processing blocks are visualized by
the boxes, while the sample streams are depicted by the
arrows that connect them. As flow graphs can get rather
complex, GNU Radio allows encapsulating functionality in
hierarchical blocks that can be used as building blocks in other
flow graphs. An example is shown in the center of Figure 1,
where we encapsulated the physical layer in a hierarchical
block, allowing us to create a clearly laid out transceiver flow
graph.

A great advantage of GNU Radio is that apart from real-
time signal processing of samples from an SDR, it can
be used for simulations, too. This is easily possible by
looping back the generated sample stream into the receiver
without interfacing actual radio hardware. GNU Radio
aids simulation setup by providing models for hardware
impairments like phase noise and clock drift, as well as
propagation environments like Additive White Gaussian
Noise (AWGN), Rayleigh, and multi-path fading.

With increased bandwidth demands of state of the art
technologies, SDRs have to process a large number of samples
per second. To cope with the data in real-time, GNU Radio
exploits multi-core CPUs by starting each signal processing
block in its own thread to distribute the load between the
cores. To further speed-up computations, the individual
blocks exploit vectorised instructions that today’s CPUs
provide through SIMD extensions like MMX, SSE, and AVX.
With GNU Radio, these instructions are accessed through the
Vector-Optimized Library of Kernels (VOLK) [36], which
provides optimized implementations of common signal
processing functions.

Improved computational performance through threaded
operation and optimized instructions are essential to the
implementation of our IEEE 802.11p transceiver. The critical
component with regard to computational performance is
the receiver, as it has to process a large number of samples

per second. Before we started this project, there was no
OFDM receiver available for GNU Radio supporting the
required bandwidth [1]. It was, therefore, unclear whether it
is possible to realize a receiver that can run in real-time on a
normal laptop or desktop PCs.

3.2 Transmitter

Compared to the receiver [1], the transmitter [2] is rather
straightforward to implement as the signal is fully specified
in the standard and has to be generated accordingly. This is in
contrast to the receiver, where the implementation is a design
decision and generally a trade-off between performance
and complexity. Furthermore, the transmitter does not
pose high computational demands, as the whole frame can
be pre-computed before it is streamed to the radio. The
sole requirement is that the stream does not stall during
transmissions, which is, however, no problem in practice.

We implemented the transmitter in C++, translating the
frame format specification of the IEEE 802.11 standard to the
stream paradigm of GNU Radio. Our transceiver is functional
complete in the sense that it supports all packet sizes and
modulation and coding schemes. The input to the transmitter
is the payload of the frame, which is subsequently

• prefixed it with a MAC header that, for example,
contains source and destination MAC addresses and
the frame type;

• appended with a 32 Bit Cyclic Redundancy Check
(CRC) for error detection;

• encoded with a convolutional code and punctured
according to the coding rate;

• mapped to complex constellation points using BPSK,
QPSK, 16-QAM, or 64-QAM;

• interleaved with pilot symbols;
• transformed to time domain with a 64-bin Fast Fourier

Transformation (FFT);
• prepended with a cyclic prefix to cope with inter-

symbol interference; and
• filtered to improve the spectral shape.

The output of this process are OFDM data symbols
(cf. Figure 2). Finally, the whole frame is prefixed with
a preamble sequence and a BPSK 1⁄2 encoded signal field that
informs the receiver about the length and encoding of the
following data symbols.

It should be mentioned that an IEEE 802.11p transmitter
has already been presented by Fuxjäger et al. [37]. This
implementation, however, was based on an older version
of GNU Radio that lacked important features that allow
for seamless packet-based operation. Moreover, it used a
hardcoded fixed packet size and did not support specifying



5

0 100 200 300 400 500 600 700
Sample Index

0
0.

2
0.

4
0.

6
0.

8
A

ut
oc

or
re

la
tio

n
C

oe
ffi

ci
en

t

Threshold

Fr
am

e
St

ar
t

Figure 3. Characteristic behavior of the autocorrelation function as
calculated in the frame detection part of the receiver.

the modulation and coding scheme on a per packet basis.
Given these limitations, we decided to reimplement the
transmit side from scratch.

3.3 Receiver

The realization of a modular IEEE 802.11a/g/p receiver is an
important part of our work and will be covered in greater
detail. Its design is mainly motivated by the WLAN frame
structure, depicted in Figure 2. Each frame starts with a short
and a long training sequence that, despite their names, have
the same length and span over two OFDM symbols. The
qualifier rather refers to the structure of the sequence: The
short training sequence uses a short pattern that repeats ten
times during two OFDM symbols, while the long training
sequence uses a longer pattern that repeats 2.5 times.

3.3.1 Frame Detection
To detect a frame, the receiver exploits the periodicity of the
short training sequence by calculating the autocorrelation
coefficient of the sample stream. Once this coefficient exceeds
a configurable threshold, subsequent signal processing steps
are triggered. Denoting the sample stream, i.e., the sequence
of complex baseband samples received from the SDR, as
s and its complex conjugate as s, the autocorrelation a is
calculated as

a[n] =

Nwin+15∑
k=0

s[n + k] s[n + k + 16] . (1)

The gap of 16 samples corresponds to the length of
the short training sequence. To be independent from the
input power level, we normalize a by the signal power p to
calculate the autocorrelation coefficient c as

p[n] =

Nwin−1∑
k=0

s[n + k] s[n + k] ; (2)

c[n] =

∣∣a[n]
∣∣

p[n]
. (3)

The typical course of the autocorrelation coefficient at the
start of a frame is depicted in Figure 3. The plot shows the
characteristic plateau during the short training sequence at a
Signal to Noise Ratio (SNR) of 10 dB.

0 100 200 300 400 500 600 700
Sample Index

C
or

re
la

tio
n

w
/K

no
w

n
Se

qu
en

ce

Position of symbols from
long training sequence

Figure 4. Characteristic output of the matched filter that correlates the
sample stream with the known pattern of the long training sequence.

With two complex multiplications per sample (one to
compute the autocorrelation and one to compute the power),
this is a very efficient algorithm [38]. Another option
would be to cross-correlate s with the known pattern of
the short training sequence, which would, however, require
16 times the multiplications, as this method scales with the
length of the sequence. Since the frame detector has to
process all samples, its computational efficiency is important,
which led us to use the autocorrelation-based approach. To
find a good parameter set for the employed algorithms,
we conducted simulations over an AWGN channel and
determined parameters empirically. The results of these
simple simulations, which we left out for the sake brevity,
showed that a window size Nwin of 48 and an autocorrelation
coefficient threshold of 0.56 yield good results.

3.3.2 Symbol Alignment
Symbol alignment is done in a separate step, since the plateau
of the autocorrelation cannot accurately determine the start
of the frame. As this part of the receiver operates only on a
subset of the samples, i.e., it is triggered when a frame was
detected, we are able to use more complex algorithms at this
stage. Here, we employ a matched filter to cross-correlate the
sample stream with the known pattern of the long training
sequence. The typical course of the cross-correlation function
is depicted in Figure 4, which, again, is plotted at an SNR of
10 dB. Note that the plot uses a linear y-axis scale, but we
omitted the axis labels as the signal is not normalized, i.e.,
only its relative course is of interest at this stage.

As shown in Figure 2, the long training sequence consists
of a pattern that repeats 2.5 times. The spikes in Figure 4
indicate the position where this pattern matches with the
input signal. Since the peaks are very narrow, this method
allows us to determine the OFDM symbol boundaries
accurately. In our implementation, we filter the number of
samples corresponding to the length of the training sequence
and search for peaks with the appropriate spacing.

3.3.3 Frequency Offset Correction
With moving devices and imperfect oscillators, the received
spectrum deviates from the ideal carrier frequency, intro-
ducing a frequency offset that the receiver has to account
for. Like in [39], we exploit the repetitive nature of the



6

short training sequence to estimate the frequency offset by
calculating

∆f =
1

16
arg

(
Nshort−1−16∑

n=0

s[n] s[n + 16]

)
. (4)

We average over Nshort samples, the complete length of
the short training sequence to get a good estimate of the offset.
This is possible, as the frame’s alignment and, thus, its start
is known very accurately in this stage. The rationale behind
the formula becomes clear when looking at the perfect case.
Given the periodicity of the short training sequence, a sample
corresponds to the time shifted sample (s[n] = s[n + 16]).
Therefore, multiplication with its complex conjugate yields
a real number, and ∆f is zero. A frequency shift, in turn,
introduces a slight phase rotation between s[n] and s[n + 1],
which will be reflected in ∆f , the average phase rotation
between successive symbols, which we use to correct the
signal by calculating

s[n]← s[n] e i (n ∆f) . (5)

3.3.4 Channel Estimation
Using a 64-bin IFFT to switch to frequency domain, we
employ the Least Squares (LS) algorithm to compensate
for frequency selective fading, introduced by multi-path
propagation. The LS equalizer, which is often used as a
baseline [10], [40], is a simple algorithm with low compu-
tational complexity that uses the long training sequence
as block pilots to compute an estimate of the channel and
uses it to correct the rest of the frame. Since we expect the
study of channel estimation algorithms to be one interesting
application of our transceiver, we implemented an interface
to plug in different algorithms.

3.3.5 Decoding
With the corrected symbols, the final step is to decode
the information using the reverse process implemented in
the transmitter. As the signal field contains information
regarding the modulation and encoding of the payload,
it is decoded first and its data is used to configure the
decoder. Finally, the received frames can be exported in the
PCAP format, which allows analyzing them with network
monitoring software like Wireshark. A screenshot of the
receiver’s graphical user interface is depicted on the right
hand side of Figure 2. At the top, it shows a log of the
received frames in Wireshark, including meta data like the
modulation and encoding scheme and a constellation plot
on the bottom (showing 16-QAM symbols in this case).
Apart from logging frames, it is possible to pipe them in
a TUN/TAP interface, a virtual network device, and, thus,
to connect the SDR to the Linux TCP/IP stack. This way the
SDR can be used like a normal network interface.

4 SIMULATIONS

In a first step, we validate our implementation of IEEE
802.11p in a simulation study by measuring the frame error
rate over an AWGN channel. Apart from highlighting its
applicability for simulations in the first place, this provides
an initial performance evaluation and allows to compare
our implementation with independent results. In this

0 5 10 15 20 25
SNR (in dB)

0
0.

25
0.

5
0.

75
1

Fr
am

e
D

el
iv

er
y

R
at

io

BPSK 1/2
BPSK 3/4

QPSK 1/2
QPSK 3/4

16-QAM 1/2
16-QAM 3/4

64-QAM 2/3
64-QAM 3/4

Figure 5. Frame delivery ratio of 435 Byte frames simulated over an
AWGN channel.

simulations and all further experiments we use a frame size
of 435 Byte, which we selected to show the performance with
an intermediate sized frame as opposed to very small or very
large ones. Furthermore, we consider 435 Byte to be about
the size of an ETSI ITS-G5 Cooperative Awareness Message
(CAM) [41], including all certificate information. The actual
size of a CAM can, however, vary significantly as

• its content depends on the type of the sender, i.e., the
format is different for a vehicle and a construction
site;

• it may contain low-frequency information that is not
sent with every frame; and

• the certificate information, which is used to validate
the signature of the message, can be a hash of
a previously transmitted certificate or a complete
certificate chain with multiple intermediate Certificate
Authorities (CAs).

Figure 5 plots the frame delivery ratio of all modulation
and coding schemes for different SNRs. The error bars show
the 95 % confidence intervals. At a very basic level, the graph
shows that the performance is reasonable in the sense that
higher order schemes need a higher SNR to work reliably.
The graph is, however, more interesting if we compare the
absolute positions of the curves with independent results.
Since these results are from experiments with different
frames sizes, we reran our simulations with corresponding
parameters to allow direct comparison. For the sake of
brevity, we omit additional graphs for these very similar
simulations.

In [11], Mittag et al. present an IEEE 802.11a/g/p physical
layer simulation model for the ns-3 network simulator. The
authors model the physical layer at signal level and, thus,
use the same level of abstraction as an SDR. The difference is
that their implementation is not real-time capable and, thus,
limited to simulations only. The authors present error curves
from experiments in a testbed and from simulations using
their model, both matching very well our simulation results.

In [42], Pei and Henderson validate the widely used
WLAN frame error rate model of the ns-3 simulator. The
paper presents an analytical model for calculating the frame
error rate that is validated by experiments in a testbed.
Again, their results match very well with ours, increasing



7

Table 1
Overview of the most important components of our SDR setup.

Component Type

Operating System Ubuntu 15.04 and OSX 10.11
GNU Radio Version 3.7.7
UHD Version 3.8.4
SDR Ettus Research N210 (revision 4)
Daughterboard XCVR 2450
Frequency Channel 178 (5.89 GHz)
Bandwidth 10 MHz and 20 MHz

Table 2
WLAN cards and IEEE 802.11p prototypes used in our interoperability

tests.

NIC Standard Bandwidth

MacBook Pro/Air 802.11a/g 20 MHz X
Intel Ultimate-N 6300 802.11a/g 20 MHz X
Air Live X.USB 802.11a/g 20 MHz X
Cohda MK2/MK5 802.11p 10 MHz X
UNEX DCMA-86P2 802.11a/p 10/20 MHz X

the confidence in the correctness of our implementation and
showing that we achieve reasonable performance.

5 INTEROPERABILITY

In simulations, we fed back the generated sample stream
directly into our receiver. While we have seen that this
provides reasonable results, we did not prove that our
implementation is standard compliant and works with other
devices. To show that this is indeed the case, we conduct
extensive interoperability test with both commercial WLAN
cards and IEEE 802.11p prototypes. Table 1 summarizes the
SDR setup that we use in our interoperability tests as well as
all following experiments. The setup is based on GNU Radio
3.7 and an Ettus Research N210 equipped with an XCVR 2450
daughterboard, which supports half-duplex operation in
the 2.4 GHz and 5 GHz band. In these experiments, we do
not rely on any hardware-specific features. Therefore, it is
possible to replace the N210 with another SDR platform that
offers the required bandwidth and covers the frequency band
of interest. In fact, our implementation also works with the
B210 from Ettus Research and the HackRF from Great Scott
Gadgets, for example.

IEEE 802.11a/g/p are very similar standards that differ
only in bandwidth and frequency. Given its ubiquity, we
test WLAN first using off-the-shelf cards that are available
in our lab. Table 2 list some of them, including widely
used chipsets from Intel as well as the chips from Apple
products used, e.g., in the MacBook Air. We test the cards in
IEEE 802.11g mode in the 2.4 GHz band as well as in IEEE
802.11a mode in the 5 GHz band. Managing to establish
bidirectional communication with these devices using either
modulation and coding scheme shows the correctness of the
implementation and proves that the SDR produces standard
compliant frames.

As we expect VANETs to be one of the main application
areas of our transceiver, we also conduct interoperability test

Table 3
Our transceiver supports all modulation and coding schemes defined in

the IEEE 802.11a/g/p standard.

Modulation Code Rate Transmission Reception

BPSK 1/2, 3/4 X X
QPSK 1/2, 3/4 X X
16-QAM 1/2, 3/4 X X
64-QAM 2/3, 3/4 X X

with different IEEE 802.11p prototypes. The first prototype
uses a UNEX DCMA-86P2, a commercial IEEE 802.11p-
capable MiniPCI WLAN card that has been successfully
used by many of the Grand Cooperative Driving Challenge
(GCDC) participants. This card is based on an Atheros
chip that is supported by the ath5k Linux driver. To
enable IEEE 802.11p operation, we adapt the Linux kernel
driver to switch to 10 MHz mode and remove regulatory
restrictions to tune to the ITS channels in the 5.9 GHz
band. Apart from the UNEX DCMA-86P2, we test an ath9k-
based Atheros card, which is supported by the official Linux
IEEE 802.11p implementation and, therefore, does not need
manual patching. The third device is a Cohda Wireless
MK5, an integrated IEEE 802.11p prototype that features
communication stacks for both IEEE DSRC/WAVE and ETSI
ITS-G5. The MK5 and its predecessors are well-known in
the research community and were used in major field tests
in USA, Australia, Germany, France, and Korea. Designed
for ITS, the MK5 is a complete On Board Unit (OBU) that
features, for example, a CAN bus interface and a sophisti-
cated IEEE 802.11p transceiver that supports multi-antenna
configurations. Again, we manage to set up bidirectional
communication, with all prototypes, supporting our claim
of a standard compliant physical layer implementation. To
make sure that our physical layer implementation is standard
compliant, we tested transmission and reception with all
modulation and coding schemes defined by the IEEE 802.11
a/g/p standard (see Table 3). Furthermore, with going
beyond simulations, these test show that we implemented a
receiver that is able to deal with impairments of real hardware
and unsynchronized clocks.

6 COMPUTATIONAL PERFORMANCE

When it comes to GPP-based SDR systems, the computational
performance and the ability to process samples in real-
time are critical factors. In this context, we refer to the
term real-time signal processing to contrast offline signal
processing. It implies that the PC is able to keep up with
the incoming sample stream without dropping samples. In
other words, the average processing time per sample is
smaller than the sample duration. This property is crucial,
since, otherwise, the transceiver would have to drop samples,
which causes packet loss. Ultimately, this could lead to wrong
interpretations of measurement results if lost frames are
regarded as effects of the wireless channel or shortcomings
of receive algorithms. Given the importance, we have an
in-depth look at the computational complexity and real-time
capabilities of our system.



8

Receiver Component

0
10

20
30

40
50

60
Sh

ar
e

of
ov

er
al

ll
oa

d
(i

n
%

)

Sy
nc

Sh
or

t

M
ov

in
g

A
vg

.

U
SR

P
So

ur
ce

M
ul

tip
ly

M
ov

in
g

A
vg

.

D
iv

id
e

Sy
nc

L
on

g

C
om

pl
ex

C
on

j.

D
el

ay

C
om

pl
ex

to
M

ag
.

C
om

pl
ex

to
M

ag
2

Fr
am

e
E

qu
al

iz
er

D
ec

od
e

Fr
am

e

FF
T

D
el

ay

St
re

am
to

V
ec

to
r

Stream-based
Frame-based

(a) 435 Byte QPSK 1/2 frames at a rate of 10 Hz.

Receiver Component

0
10

20
30

40
50

60
Sh

ar
e

of
ov

er
al

ll
oa

d
(i

n
%

)

D
ec

od
e

Fr
am

e

Fr
am

e
E

qu
al

iz
er

Sy
nc

L
on

g

Sy
nc

Sh
or

t

U
SR

P
So

ur
ce

M
ov

in
g

A
vg

.

FF
T

M
ov

in
g

A
vg

.

M
ul

tip
ly

D
iv

id
e

D
el

ay

C
om

pl
ex

C
on

j.

D
el

ay

C
om

pl
ex

to
M

ag
.

St
re

am
to

V
ec

to
r

C
om

pl
ex

to
M

ag
2

Stream-based
Frame-based

(b) Fully saturated channel with 1500 Byte 64-QAM 3/4 frames.

Figure 6. Computational demands of individual signal processing blocks.

In that regard, the transmit side is not critical as the
whole waveform can be pre-computed and streamed to
the SDR. The only requirement is that the stream does
not stall, which is, however, no problem in practice. The
receive side is much more challenging as it has to process
a large number of samples in real-time. An IEEE 802.11p
channel with a bandwidth of 10 MHz, for examples, results
in 10× 106 complex floating point numbers per second.

To cope with such high bandwidths, GNU Radio starts
each signal processing block in its own thread. During run-
time, each block monitors performance related metrics like
CPU time and fill state of the input and output queues [43].
Depending on the hardware platform and the operating
system, there are several methods available to log the
CPU time. We use the accurate thread clock, which takes
into account only the time when the thread was actually
scheduled by the operating system.

To capture the data, we implemented an application that
connects to the transceiver while it is running. After it
establishes the connection it resets the performance data
of the transceiver, waits for a configurable amount of time,
and prints the data in CSV format. We used this application
to study the computational complexity of the individual
receiver components. For the measurements, we ran the
receiver on a desktop PC with an Intel i7-7700k CPU and
16 GByte RAM. The operating system was Ubuntu 16.04
running a Linux 4.4.0 kernel. We compiled GNU Radio and
our transceiver with GCC 5.4.0 in release mode, which enables
all standard compliant run time optimizations. While the
quantitative results vary dependent on the system, we have
seen similar qualitative results, for example, on other Linux
laptops and a MacBook Air running macOS.

In a first test, the receiver decoded 435 Byte QPSK 1/2
frames, sent at a rate of 10 frames per second and a band-
width of 10 MHz. To have absolute accurate timing, we
generated the sample stream with the proper interframe
space in advance and used another SDR to replay these
samples. We ran the receiver over 30 s and logged the
CPU time of the individual components. The first notable
observation is that the receiver did not drop samples and
was able to decode all frames. This means that all samples
were processed and all frames traversed the whole signal
processing chain. The results are depicted in Figure 6a, where

we plot the share of the overall CPU time per block.
The style of the bars corresponds to different parts of the

receiver. The first part labeled “Stream-based” comprises
blocks that are involved in frame detection. These blocks
have to process all samples to search for the cyclic pattern of
the short training sequence and decide whether subsequent
decoding steps should be triggered. Their load scales,
therefore, linearly with the bandwidth of the signal, i.e.,
a 5 MHz signal would cut their computational demands in
half.

The second part labeled “Frame-based” comprises blocks
that are involved in decoding frames. Depending on the
signal processing task, these blocks scale with different frame
parameters:

• The Sync Long block causes constant overhead per
frame as it mainly aligns with the frame using cross-
correlation with the known preamble.

• The Equalize Symbols block implements the equalizer,
which mainly scales with the number of OFDM
symbols, i.e., frame duration.

• The Decode MAC block works on bits and, therefore,
scales with the length of the data payload.

By understanding the computational complexity of individ-
ual blocks, it is possible to adapt the experiment to the
available processing power.

In our initial experiment this was not required as an
average PC can easily decode IEEE 802.11p frames in real-
time. We tested the same configuration also with a laptop
and a MacBook Air (both with 8 GByte RAM and an Intel i5
CPU) without frame loss. This shows that even laptops are
real-time-capable for low-traffic scenarios. On the desktop,
this configuration leaves more than enough headroom to
experiment with more complex signal processing algorithms.

Apart from this low-traffic scenario, we were curious to
see if our implementation can cope with the most challenging
conditions, i.e., a fully saturated channel. In this experiment,
we create a sample stream with 1500 Byte 64-QAM 3/4 frames.
Using the modulation and coding scheme with the highest
data rate, we maximize the computational load for the
receiver. In addition to that, we separate the frames by
only 58 µs, which corresponds to the minimum interframe
space for IEEE 802.11p. We do not use any backoff slots, but



9

always use the minimum value to create the most challenging
scenario.

Also in this experiment, we ran the receiver to monitor
the load of each component. The results are depicted in
Figure 6b. Again, the receiver did not drop any samples,
which means that we are able to process even a saturated
channel in real-time. As expected, the frame-based receiver
components are responsible for a large part of the overall load.
The Decode MAC block, which includes the Viterbi decoder,
causes the highest load. With about 34 % of the overall load,
it would currently present the bottle-neck when aiming for
higher data rates. In the 30 s experiment, it occupied one
CPU core nearly exclusively with a CPU time of 27 s.

Finally, we wanted to rule out that per-frame overhead
could be a limiting factor. We, therefore, performed a similar
experiment with short 64-QAM 3/4 frames, containing only
the MAC and LLC, but no data payload. Also these frames
were sent with an interframe space of 58 µs. Like in the
previous experiments, the receiver was able to keep up with
the sample stream, highlighting the real-time capability of
our implementation.

7 TIME-CRITICAL FUNCTIONALITY

Having a physical layer implementation that works well with
other devices, we are interested in which level of standard
compliance we can reach with a GPP-based SDR. It is well-
known that the disadvantage of this architecture is the delay,
introduced by streaming the samples to the PC, and the
jitter, introduced by processing the signal on a non-real-time
operating system [44]. It is, therefore, hardly possible to
acknowledge a unicast frame or reply to a Request To Send
(RTS) in only 32 µs as mandated by the standard [45].

In both cases, the main problem is that the receiver
has to decode the frame before it can react by sending
an Acknowledgement Frame (ACK) or a Clear To Send
(CTS). Meeting those timings would require to implement
the whole receiver on the FPGA. Fortunately, there are some
time-critical functions, where the receiver does not have to
decode the frame, but merely to detect its presence. Examples
for such functions are Automatic Gain Control (AGC) and
channel access for broadcast frames. In the following, we
show that it is indeed possible to implement such limited
functionality on the FPGA without giving up advantages
of a software implementation. Using what Nychis et al.
termed a split-functionality approach [44], we implement time-
critical functionality on the FPGA while leaving the main
physical layer implementation in software. Following this
approach, we explore the possibilities of the architecture
without sacrificing the accessibility of the physical layer
implementation. This design decision differentiates our
transceiver from, for example, Microsoft’s Sora.

7.1 Automatic Gain Control

Since transceivers often receive frames from multiple sources,
the power level can vary significantly between frames. This is
especially relevant in VANETs, where the maximum transmit
power is higher than in ordinary WLAN networks, resulting
in larger differences between high and low power frames.
Given these varying input power levels, a static gain cannot

0 100 200 300

-4
0

-3
0

-2
0

-1
0

0
Po

w
er

(i
n

dB
)

Time (in µs)

0 100 200 300

90 100 110

-5
0

5

90 100 110

-5
0

5

Figure 7. Power over time for a low-power frame that got amplified by
AGC (left) and a high-power frame that got attenuated (right).

provide optimal performance, as either weak frames do not
take full advantage of the dynamic range of the Analog-to-
Digital Converter (ADC), resulting in quantization noise,
or high power frames saturate the receiver and introduce
distortions. With AGC, the receiver measures the power
during frame detection and adjusts the gain to an optimal
level that balances the trade-off between quantization noise
and distortions.

To find such level, we send frames from one SDR to
another while varying the gain at both sender and receiver.
Using the results from this experiment, we determine an
optimal input power level empirically. To implement AGC,
we extend the FPGA of the Ettus N210 to control the
gain of the XCVR 2450 daughterboard. The daughterboard
uses a MAX2829 transceiver, which allows controlling the
gain directly via pins. While readjusting the gain, the
transceiver introduces considerable distortions, but resettles
after only 40 ns [46], which is short compared to 16 µs of the
short training sequence. This is an important performance
characteristic, as all gain adjustments have to happen during
the short training sequence, since the following long training
sequence is used for initial channel estimations.

To realize AGC, we extend the FPGA design of the
N210 with VHDL modules to calculate the autocorrelation
coefficient and employ it for frame detection using the same
algorithm as on the host (cf. Section 3). Once a frame is
detected, we use a lookup table to map its input power level
to a gain setting that adjusts it as close as possible to the
optimal value.

As demonstrated in [4], we use a commercial WLAN card
to test the performance of our implementation by sending
frames at different power levels and recording the signal
after gain control on a PC. The results are depicted in
Figure 7. Both plots show the power level during frame
start. As the N210 is not calibrated to measure absolute
power, we plot the relative power with regard to the target
power level on the y-axis. The left hand side corresponds
to a low-power frame that was amplified by the AGC to
reach the desired level, while the right hand side shows a
high-power frame that got attenuated. We can see that after
initial adjustments, both frames settle at the same power
level. In the inset, we zoom in at the very start of the frame
and shade the short training sequence in gray. This shows



10

Table 4
Default EDCA parameter set [45, Table 8-106].

AC CWmin AIFS

Background aCWmin = 15 149 µs
Best Effort aCWmin = 15 110 µs
Video (aCWmin + 1)/2− 1 = 7 71 µs
Voice (aCWmin + 1)/4− 1 = 3 58 µs

that the receiver stabilizes during the short training sequence
and does not cause distortions thereafter. All frames were
perfectly receivable, showing the feasibility of the approach.

7.2 Channel Access
The second time-critical functionality that we studied [3] is
channel access for broadcast frames. By limiting the scope
to broadcasts, we omit dependent transmissions like ACKs,
which cannot be realized with an N210. Fortunately, this
limitation is not problematic in the context of VANETs, as
they rely mostly on broadcasts. In fact, it was recently
shown that unicast transmissions can cause considerable
performance degradation [47].

IEEE 802.11p uses Enhanced Distributed Channel Access
(EDCA) [45], which supports QoS through traffic classes that
range from voice, with the highest priority, to best effort with
the lowest priority. In a nutshell, EDCA works as follows:
The traffic classes differ in their average channel access delay,
where high-priority frames, for example, wait shorter on
average and are, thus, likely to be sent first. When a frame
is scheduled for transmission, it waits until the channel is
free for a period called Arbitration Inter Frame Space (AIFS)
before it starts counting down a random number of 13 µs
slots. The number of slots is chosen uniformly between
zero and a congestion window of CWmin. Both AIFS and
CWmin depend on the traffic class of the frame. Their default
parameters for IEEE 802.11p are listed in Table 4. If the
channel turns busy at some point during this procedure, the
sender restarts the process, i.e., it waits again for an AIFS
period before it continues to count down slots. Once the slots
reach zero, the frame is sent.

To realize this functionality on the FPGA, we implement
modules that calculate the power level to decide whether
the channel is free or busy and add a state machine that
coordinates channel sensing and timings. The frames are still
generated on the PC and transferred to the N210 where they
are kept in memory until the state machine triggers their
transmission. Per-frame parameters like AIFS and back off
slots are generated on the PC and attached as metadata.

To show the feasibility of the approach and to validate our
implementation, we start with an experiment to test channel
sensing and timing accuracy. Using one SDR to generate
noise and block the channel, we pre-load a WLAN frame on
another SDR. The frame is configured to be sent with zero
backoff slots and the shortest inter frame space, i.e., the AIFS
of the voice traffic class, which is 58 µs. With a third SDR, we
monitor the channel while switching off the noise source. The
channel utilization of this experiment is depicted in Figure 8.
The first 100 µs show the channel blocked by noise. After
switching off the noise source, the channel remains idle for
59.8 µs before the WLAN frame is sent. Receiving the frame

0 50 100 150 200 250
Time (in µs)

Po
w

er

Noise AIFS WiFi Frame

59.8µs

Figure 8. Channel utilization to verify channel sensing and AIFS timing.

D
en

si
ty

AIFS[VO]

Slot
Boundaries

0 25 50 75 100 125 150 175
Inter-Arrival Time (in µs)

D
en

si
ty

AIFS[VI]

Figure 9. Distribution of inter-arrival times when saturating the channel
with frames of the access category voice (top) and video (bottom).

with another receiver, we asserted that it was not corrupted
by the Carrier Sense Multiple Access (CSMA) process.

The results from this experiment indicate that channel
sensing and delaying work as expected. In fact, the time
gap is close to the target delay of 58 µs. The additional 1.8 µs
can be explained by 1 µs RX-TX turnaround time of the half-
duplex transceiver [46] and a 0.8 µs time window used to
average power values in the channel sensing module. As the
additional delay is similar for every frame, we could subtract
it from the inter frame space. This is, however, not needed
since already the current implementation is below the 2 µs
aRxTxTurnaroundTime mandated by the standard.

In a second experiment, we saturate the channel with
frames of a given access category and measure their inter-
arrival times. Using an idle channel, the sender never has to
back off, but is able to send at maximum rate. In that scenario
channel access should work as follows: After every frame,
the sender enters a post-transmit backoff state, waiting for an
AIFS plus a random number of backoff slots. This mechanism
avoids that a single transmitter captures the channel, sending
frames back-to-back. To verify the distribution of the inter-
arrival times, we use a UNEX card to log the frames and
record their arrival times in the receive interrupt handler.



11

Figure 10. Photo of the experiment setup. The receivers use 6 dBi dipole
antennas.

We repeat the experiment with all access categories, but, for
the sake of brevity, include only results for voice and video.
Figure 9 shows the distribution of their inter-arrival times
for these traffic classes. Each plot is based on over 30 000
frames. We can see that the histograms match very well
with the ideal distributions, as all time slots are used with
about the same probability and the timings match well with
the inter-arrival times defined in the standard (indicated as
dashed gray lines in the plot). Furthermore, as there are no
larger inter-arrival times, this also shows that it is possible to
fully saturate the channel.

In a final experiment, we study MAC layer interoperabil-
ity with a commercial WLAN card by testing whether each
device gets its fair share of the channel. We saturate the
channel with a UNEX card and an SDR, both sending frames
of the same access category. Using a second UNEX card,
we monitor transmissions and calculate the bandwidth over
time. The results (graphs omitted for the sake of brevity)
attest a fair share of the channel between both devices and,
thus, MAC layer interoperability between the SDR and the
commercial card.

To summarize, our experiments show that, with minor
modifications to the FPGA, it is possible to implement AGC
and channel access for broadcast transmissions. Following
the split functionality approach, we preserve the advantages
of a software implementation, while extending standard
compliance beyond the physical layer.

8 FIELD TEST

To highlight the applicability of the transceiver for experi-
ments on the road, we conduct a field test near Paderborn,
Germany. For this test, we equip two cars with multiple
IEEE 802.11p prototypes, as shown in Figure 10. On the
transmit side, we use a Cohda Wireless MK5 and our SDR
implementation with an Ettus N210 using an XCVR 2450
daughterboard. While both transmitters are in no way
calibrated measurement devices, we set their output power
to about 10 dBm. On the MK5, this can be configured, while
on the SDR we adjust the gain and the signal amplitude,
assuming a maximum output power of 20 dBm, which is
listed as a typical value in the datasheet. Both devices are
controlled by a laptop, which triggers frame transmissions
alternating on the MK5 and the SDR, leaving enough timing

30 90 150 210 270
Distance (in m)

0
0.

25
0.

5
0.

75
1

Fr
am

e
D

el
iv

er
y

R
at

io

SDR⇒MK5 MK5⇒MK5

Figure 11. Packet delivery ratio of frames sent with an MK5 and an SDR,
using another MK5 as a reference receiver.

margins to avoid collisions between the devices. Like in
simulations, we use 435 Byte frames to resemble an average-
sized ITS frame. We set the modulation and coding scheme
to QPSK 1⁄2, as we do not want to use the simplest scheme,
but show that the receiver is able to deal with higher order
modulations. Furthermore, QPSK 1⁄2 was found to provide a
good compromise between throughput and robustness, and
it represents the default modulation and coding scheme for
periodic awareness messages in ETSI ITS-G5 [48].

On the receive side, we use another MK5, a similar SDR
setup, and, additionally, a UNEX DCMA-86P2. The receivers
use 9 dBi dipole antennas mounted at the center of the roof (cf.
Figure 10). Note that each receiver uses its own antenna and,
thus, experiences independent fast fading effects. Thus, we
compare average reception rates and not individual frames.

Both cars log their positions every 0.5 s with a NEO-7N,
a high precision GPS receiver from u-blox. The positions
at frame transmissions are later linearly interpolated based
on the GPS time series. During the measurements, the cars
drive around in diverse surroundings, ranging from open
fields, to rural areas, to city environments. The speed was
up to 70 km/h, but mostly around 40 km/h.

8.1 Transmit Performance

The first aspect that we investigate is the ability to transmit
standard compliant IEEE 802.11p frames. Using the Cohda
Wireless MK5 as the receiver, we plot the packet delivery
ratio of frames generated by the SDR and the MK5 at
different distances in Figure 11. Here and in the following
plots, we bin the data in 10 intervals ranging from 15 m
to 300 m, excluding short distance frames recorded on the
parking lot. The graph in Figure 11 conveys two important
messages. First, our SDR transceiver is able to generate
standard compliant IEEE 802.11p frames that are received
by the MK5, not only under idealized lab conditions, but
also in a realistic scenario. Second, both transmitters show
similar performance, highlighting the applicability of the
SDR transceiver for field tests.

These measurements should not be mistaken for a per-
formance comparison between the SDR and the MK5, as
this would require more precise power calibration and the
exact same antenna placement as the position on the roof can
have a significant impact [10], [49]. Apart from performance



12

30 90 150 210 270
Distance (in m)

0
25

0
50

0
R

ec
ei

ve
d

Fr
am

es

210 270
0

20
40 MK5⇒ SDR

MK5⇒MK5
MK5⇒ Unex

(a) Packet delivery ratio of IEEE 802.11p frames

9:40 9:50 10:00 10:10 10:20
Time of Day

0
50

0
10

00
15

00
R

ec
ei

ve
d

Fr
am

es

80%

91%
89%

2 trucks inbetween

large distance

urban area

MK5⇒ SDR
MK5⇒MK5
MK5⇒ Unex

(b) Cumulative number of packets received over time.

Figure 12. Receive performance using a Cohda Wireless MK5 as a sender.

characteristics, the plot shows that the environment naturally
led to packet loss, as it is typical under realistic conditions.

8.2 Receive Performance
Having tested the ability to send standard compliant frames,
we study the receive performance of our SDR prototype.
Using the MK5 as sender, we plot the number of frames
received by the SDR, the MK5, and the UNEX card in
Figure 12a. The inset shows a zoomed version of distances
between 150 m and 300 m where the sample size is relatively
low. The main message of the plot is that all three transceivers
show comparable performance in our field test. Based
on advanced hardware and software, the MK5 provides
a slightly higher reception rate. This is in accordance to with
independent experiments that compared a predecessor of the
MK5 with off-the-shelf cards [20].

Another view on the same data is shown in Figure 12b,
where we plot the cumulative number of received packets
over time. Since we sent frames at a constant rate, the total
number would yield a straight line under ideal conditions.
The plot, however, shows regions with a lower slope, indi-
cating packet loss. Correlating these losses with events that
we logged during the experiment shows that the losses seem
reasonable in the sense that they are caused by shadowing,
a large gap between sender and receiver, and challenging
multi-path environments. In other words, the SDR does not
suffer from systematic, random errors, but dropped frames
in challenging environments. In addition, we annotate the
overall ratio of received packets per receiver on the right hand
side of the plot to allow a quantitative comparison. It shows
that the SDR lost 20 % of all frames, while the MK5 and the
UNEX card lost around 10 %. The difference can be explained
by the use of more sophisticated receive algorithms in the
commercial device and the prototype. The MK5, for example,
is likely based on a channel estimation algorithm published
by Cohda Wireless employees [7]. The lower reception rate
of the SDR, in turn, is no general weakness of the approach,
but reflects known limitations of the LS equalizer in dynamic
channels [10], [40].

9 USE CASES AND CONCLUSION

In summary, we presented and evaluated a simulation and
experimentation framework for IEEE 802.11p. The frame-

work is built around an SDR-based IEEE 802.11p transceiver
that we verified through extensive interoperability tests with
VANET prototypes and consumer grade WLAN cards. The
physical layer of the transceiver is implemented completely in
software, making it easy to use, modify, and debug. Despite
the delay challenges of the SDR architecture, we showed
that with minor modifications to the FPGA it is possible to
realize standard compliant channel access and even AGC.
Ultimately, the applicability of our transceiver for real-world
experiments was shown in a field test. To foster its use and to
allow reproduction of the results, we released the transceiver
under an Open Source license.1

We believe that our SDR-based IEEE 802.11p transceiver
will serve as a valuable tool to study many aspects of
VANETs. In fact, it has already been used for privacy-
related research, where it provided access to information
that is not available with normal WLAN cards [34], and
large-scale vehicular network simulations, where it provided
a realistic physical layer simulation model [19]. We think,
however, that its most interesting applications in the signal
processing context have yet to be explored. Given the
fact that it can be used for simulations and experiments,
it allows for a workflow that other tools do not offer. The
physical layer is implemented in a high-level programming
language and is, therefore, well suited for rapid prototyping
of signal processing algorithms. Using simulations, these
implementations can be verified and algorithms can be
tested in a reproducible manner. Since the performance
of the transceiver can be assessed with different simulation
models for the wireless channel, interference, and hardware
impairments, it is possible to get an in-depth understanding
of how the system behaves in diverse environments. Finally,
the switch to lab measurements and field tests is seamless
and merely a slight reconfiguration of the flow graph. With
the possibility to conduct experiments, researchers can easily
proof the feasibility of an idea or algorithm. Another benefit
stems from the fact that field tests often provide new insights
that in a kind of feedback loop can lead to new ideas that,
again, can be studied through simulations. Such iterative
workflow is barely possible with other prototypes and, in
our opinion, a big advantage of our approach.

1. https://www.wime-project.net

https://www.wime-project.net


13

REFERENCES

[1] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An IEEE
802.11a/g/p OFDM Receiver for GNU Radio,” in ACM SIGCOMM
2013, 2nd ACM SIGCOMM Workshop of Software Radio Implementation
Forum (SRIF 2013). Hong Kong, China: ACM, Aug. 2013, pp.
9–16.

[2] ——, “Towards an Open Source IEEE 802.11p Stack: A Full SDR-
based Transceiver in GNURadio,” in 5th IEEE Vehicular Networking
Conference (VNC 2013). Boston, MA: IEEE, Dec. 2013, pp. 143–149.

[3] B. Bloessl, A. Puschmann, C. Sommer, and F. Dressler, “Timings
Matter: Standard Compliant IEEE 802.11 Channel Access for a
Fully Software-based SDR Architecture,” in 20th ACM International
Conference on Mobile Computing and Networking (MobiCom 2014), 9th
ACM International Workshop on Wireless Network Testbeds, Experi-
mental evaluation and Characterization (WiNTECH 2014). Maui, HI:
ACM, Sep. 2014, pp. 57–63.

[4] B. Bloessl, C. Sommer, and F. Dressler, “Power Matters: Automatic
Gain Control for a Software Defined Radio IEEE 802.11a/g/p
Receiver,” in 34th IEEE Conference on Computer Communications
(INFOCOM 2015), Demo Session. Hong Kong, China: IEEE, Apr.
2015, pp. 25–26.

[5] C. Sommer and F. Dressler, Vehicular Networking. Cambridge
University Press, Nov. 2014.

[6] “Wireless Access in Vehicular Environments,” IEEE, Std 802.11p-
2010, Jul. 2010.

[7] P. Alexander, D. Haley, and A. Grant, “Outdoor Mobile Broadband
Access with 802.11,” IEEE Communications Magazine, vol. 45, no. 11,
pp. 108–114, Nov. 2007.

[8] K. K. Nagalapur, F. Brännström, and E. G. Ström, “On Channel
Estimation for 802.11p in Highly Time-Varying Vehicular Channels,”
in IEEE International Conference on Communications (ICC 2014).
Sydney, Australia: IEEE, Jun. 2014, pp. 5659–5664.

[9] J. A. Fernandez, K. Borries, L. Cheng, B. V. K. Vijaya Kumar, D. D.
Stancil, and F. Bai, “Performance of the 802.11p Physical Layer in
Vehicle-to-Vehicle Environments,” IEEE Transactions on Vehicular
Technology, vol. 61, no. 1, pp. 3–14, Jan. 2012.

[10] C. F. Mecklenbräuker, A. F. Molisch, J. Karedal, F. Tufvesson,
A. Paier, L. Bernadó, T. Zemen, O. Klemp, and N. Czink, “Vehicular
Channel Characterization and its Implications for Wireless System
Design and Performance,” Proceedings of the IEEE, vol. 99, no. 7, pp.
1189–1212, Jul. 2011.

[11] J. Mittag, S. Papanastasiou, H. Hartenstein, and E. G. Ström, “En-
abling Accurate Cross-Layer PHY/MAC/NET Simulation Studies
of Vehicular Communication Networks,” Proceedings of the IEEE,
vol. 99, no. 7, pp. 1311–1326, Jul. 2011.

[12] S.-K. Lee, Y.-A. Kao, and H.-W. Chen, “Performance of A
Robust Inner Receiver with Frequency Domain LMS Equalizer
for DSRC Systems,” in International Wireless Communications and
Mobile Computing Conference 2006 (IWCMC’06). Vancouver, Canada:
ACM, Jul. 2006, pp. 985–990.

[13] Y. Zhang, I. L. Tan, C. Chun, K. Laberteaux, and A. Bahai,
“A Differential OFDM Approach to Coherence Time Mitigation
in DSRC,” in 5th ACM International Workshop on Vehicular Inter-
Networking (VANET 2008). San Francisco, CA: ACM, Sep. 2008,
pp. 1–6.

[14] F. A. Teixeira, V. F. e Silva, J. L. Leoni, D. F. Macedo, and J. M.
Nogueira, “Vehicular networks using the IEEE 802.11p standard:
An experimental analysis,” Elsevier Vehicular Communications, vol. 1,
no. 2, pp. 91–96, Apr. 2014.

[15] J. Santa, F. Pereñíguez, A. Moragón, and A. F. Skarmeta, “Ex-
perimental evaluation of CAM and DENM messaging services in
vehicular communications,” Elsevier Transportation Research Part C:
Emerging Technologies, vol. 46, pp. 98–120, Sep. 2014.

[16] A. B. Reis, S. Sargento, F. Neves, and O. K. Tonguz, “Deploying
Roadside Units in Sparse Vehicular Networks: What Really Works
and What Does Not,” IEEE Transactions on Vehicular Technology,
vol. 63, no. 6, pp. 2794–2806, Jul. 2014.

[17] F. Dressler, H. Hartenstein, O. Altintas, and O. K. Tonguz,
“Inter-Vehicle Communication - Quo Vadis,” IEEE Communications
Magazine, vol. 52, no. 6, pp. 170–177, Jun. 2014.

[18] C. Sommer, J. Härri, F. Hrizi, B. Schünemann, and F. Dressler,
“Simulation Tools and Techniques for Vehicular Communications
and Applications,” in Vehicular ad hoc Networks - Standards, Solutions,
and Research, C. Campolo, A. Molinaro, and R. Scopigno, Eds.
Springer, May 2015, pp. 365–392.

[19] D. Maier, S. Moser, and F. Slomka, “Deterministic Models of the
Physical Layer Through Signal Simulation,” in 8th International
Conference on Simulation Tools and Techniques (SIMUTools 2015).
Athens, Greece: ICST, Aug. 2015, pp. 175–182.

[20] H. Rakouth, P. Alexander, A. Brown Jr., W. Kosiak, M. Fukushima,
L. Ghosh, C. Hedges, H. Kong, S. Kopetzki, R. Siripurapu, and
J. Shen, “V2X Communication Technology: Field Experience
and Comparative Analysis,” in FISITA World Automotive Congress.
Beijing, China: Springer, Nov. 2012, pp. 113–129.

[21] M. Boban, T. Vinhosa, J. Barros, M. Ferreira, and O. K. Tonguz,
“Impact of Vehicles as Obstacles in Vehicular Networks,” IEEE
Journal on Selected Areas in Communications, vol. 29, no. 1, pp. 15–28,
Jan. 2011.

[22] T. Mangel, O. Klemp, and H. Hartenstein, “A Validated 5.9
GHz Non-Line-of-Sight Path-Loss and Fading Model for Inter-
Vehicle Communication,” in 11th International Conference on ITS
Telecommunications (ITST 2011). St. Petersburg, Russia: IEEE, Aug.
2011, pp. 75–80.

[23] C. Sommer, S. Joerer, and F. Dressler, “On the Applicability of
Two-Ray Path Loss Models for Vehicular Network Simulation,” in
4th IEEE Vehicular Networking Conference (VNC 2012). Seoul, Korea:
IEEE, Nov. 2012, pp. 64–69.

[24] A. Geiger, M. Lauer, F. Moosmann, B. Ranft, H. Rapp, C. Stiller, and
J. Ziegler, “Team AnnieWAY’s entry to the 2011 Grand Cooperative
Driving challenge,” IEEE Transactions on Intelligent Transportation
Systems, vol. 13, no. 3, pp. 1008–1017, Apr. 2012.

[25] S. Laux, G. S. Pannu, S. Schneider, J. Tiemann, F. Klingler,
C. Sommer, and F. Dressler, “OpenC2X - An Open Source Ex-
perimental and Prototyping Platform Supporting ETSI ITS-G5,” in
8th IEEE Vehicular Networking Conference (VNC 2016), Demo Session.
Columbus, OH: IEEE, Dec. 2016, pp. 152–153.

[26] A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabharwal, and
E. W. Knightly, “WARP: A Flexible Platform for Clean-Slate
Wireless Medium Access Protocol Design,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 12, no. 1, pp.
56–58, Jan. 2008.

[27] Y. Shin, G. Seo, S. Woo, K. Ko, and C. Mun, “Demo: Implementation
of IEEE 802.11p transceiver Using USRP-RIO By LabVIEW Com-
munications,” in 7th IEEE Vehicular Networking Conference (VNC
2015). Kyoto, Japan: IEEE, Dec. 2015, pp. 177–178.

[28] G. Sklivanitis, A. Gannon, S. N. Batalama, and D. A. Pados, “Ad-
dressing Next-Generation Wireless Challenges with Commercial
Software-Defined Radio Platforms,” IEEE Communications Magazine,
vol. 54, no. 1, pp. 59–67, Jan. 2016.

[29] T. Vilches and D. Dujovne, “GNURadio and 802.11: Performance
Evaluation and Limitations,” IEEE Network, vol. 28, no. 5, pp. 27–31,
Sep. 2014.

[30] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker,
“Sora: High Performance Software Radio Using General Purpose
Multi-core Processors,” Communications of the ACM, vol. 54, no. 1,
pp. 99–107, Jan. 2011.

[31] T. W. Rondeau, “On the GNU Radio Ecosystem,” in Opportunistic
Spectrum Sharing and White Space Access: The Practical Reality,
O. Holland, H. Bogucka, and A. Medeisis, Eds. Wiley, May
2015, pp. 25–48.

[32] B. Bloessl, M. Gerla, and F. Dressler, “IEEE 802.11p in Fast Fading
Scenarios: From Traces to Comparative Studies of Receive Algo-
rithms,” in 22nd ACM International Conference on Mobile Computing
and Networking (MobiCom 2016), 1st ACM International Workshop
on Smart, Autonomous, and Connected Vehicular Systems and Services
(CarSys 2016). New York, NY: ACM, Oct. 2016.

[33] R.-A. Stoica, S. Severi, and G. T. F. de Abreu, “On Prototyping
IEEE802.11p Channel Estimators in Real-World Environments
Using GNURadio,” in 2016 IEEE Intelligent Vehicles Symposium
(IV). Gothenburg, Sweden: IEEE, Jun. 2016, pp. 10–15.

[34] B. Bloessl, C. Sommer, F. Dressler, and D. Eckhoff, “The Scrambler
Attack: A Robust Physical Layer Attack on Location Privacy
in Vehicular Networks,” in 4th IEEE International Conference on
Computing, Networking and Communications (ICNC 2015), CNC
Workshop. Anaheim, CA: IEEE, Feb. 2015, pp. 395–400.

[35] G. Arcos, R. Ferreri, M. Richart, P. Ezzatti, and E. Grampín,
“Accelerating an IEEE 802.11 a/g/p Transceiver in GNU Radio,” in
9th Latin America Networking Conference (LANC’16). Valparaíso,
Chile: ACM, Oct. 2016, pp. 13–19.

[36] T. W. Rondeau, N. McCarthy, and T. O’Shea, “SIMD Programming
in GNU Radio: Maintainable und User-Friendly Algorithm Opti-
mization with VOLK,” in Conference on Communications Technologies



14

and Software Defined Radio (SDR’12). Brussels, Belgium: Wireless
Innovation Forum Europe, Jun. 2012.

[37] P. Fuxjäger, A. Costantini, D. Valerio, P. Castiglione, G. Zacheo,
T. Zemen, and F. Ricciato, “IEEE 802.11p Transmission Using
GNURadio,” in 6th Karlsruhe Workshop on Software Radios (WSR),
Karlsruhe, Germany, Mar. 2010, pp. 1–4.

[38] L. Chia-Horng, “On the design of OFDM signal detection algo-
rithms for hardware implementation,” in IEEE Global Telecommuni-
cations Conference (GLOBECOM 2003). San Francisco, CA: IEEE,
Dec. 2003, pp. 596–599.

[39] T. Schmidl and D. Cox, “Robust frequency and timing synchro-
nization for OFDM,” IEEE Transactions on Communications, vol. 45,
no. 12, pp. 1613–1621, 1997.

[40] R.-A. Stoica, S. Severi, and G. T. Freitas de Abreu, “Learning the
Vehicular Channel Through the Self-Organization of Frequencies,”
in 7th IEEE Vehicular Networking Conference (VNC 2015). Kyoto,
Japan: IEEE, Dec. 2015, pp. 68–75.

[41] “Intelligent Transport Systems (ITS); Vehicular Communications;
Basic Set of Applications; Part 2: Specification of Cooperative
Awareness Basic Service,” ETSI, EN 302 637-2 V1.3.2, Nov. 2014.

[42] G. Pei and T. R. Henderson, “Validation of OFDM Error Rate Model
in ns-3,” Boeing Research & Technology, Tech. Rep., 2010.

[43] T. W. Rondeau, T. O’Shea, and N. Goergen, “Inspecting GNU
Radio Applications with ControlPort and Performance Counters,”
in ACM SIGCOMM 2013, 2nd ACM SIGCOMM Workshop of Software
Radio Implementation Forum (SRIF 2013). Hong Kong, China: ACM,
Aug. 2013, pp. 65–70.

[44] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste,
“Enabling MAC Protocol Implementations on Software-Defined
Radios,” in 6th USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI 2009). Boston, MA: USENIX,
Apr. 2009, pp. 91–105.

[45] “Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications,” IEEE, Std 802.11-2012, 2012.

[46] “MAX2828/MAX2829 Single-/Dual-Band 802.11a/b/g World-
Band Transceiver ICs,” Maxim Integrated, Datasheet Rev 0, Oct.
2004.

[47] F. Klingler, F. Dressler, and C. Sommer, “IEEE 802.11p Unicast
Considered Harmful,” in 7th IEEE Vehicular Networking Conference
(VNC 2015). Kyoto, Japan: IEEE, Dec. 2015, pp. 76–83.

[48] “Intelligent Transport Systems (ITS); Vehicular communications;
GeoNetworking; Part 4: Geographical addressing and forwarding
for point-to-point and point-to-multipoint communications; Sub-
part 2: Media-dependent functionalities for ITS-G5,” ETSI, TS 102
636-4-2 V1.1.1, Oct. 2013.

[49] A. Kwoczek, Z. Raida, J. Láčík, M. Pokorný, J. Puskely, and
P. Vágner, “Influence of Car Panorama Glass Roofs on Car2car
Communication,” in 3rd IEEE Vehicular Networking Conference (VNC
2011), Poster Session. Amsterdam, Netherlands: IEEE, Nov. 2011,
pp. 246–251.

Bastian Bloessl [S] (bloessl@ccs-labs.org) is
a researcher at the CONNECT Center, Trinity
College Dublin, Ireland’s Research Center for
Future Networks and Communications, where
he is funded through a Marie Skłodowska-Curie
fellowship. He received his diploma in Computer
Science from the University of Würzburg, Ger-
many, in 2011. After his diploma, he started as
a PhD student at the Computer and Communica-
tion Systems Group at the University of Innsbruck,
Austria. In 2014, he moved with the group to

Paderborn University, Germany, to continue his studies. In 2015, he
won a FitWeltweit scholarship from the German Academic Exchange
Service (DAAD), which funded a six-month stay in the research group of
Prof. Mario Gerla at the Computer Science Department of the University
of California, Los Angeles (UCLA). His research is focused on using
software defined radio-based prototypes to assess the performance and
robustness of vehicular and sensor networks.

Michele Segata [M] (msegata@disi.unitn.it) re-
ceived his B.Sc. and M.Sc. in Computer Science
from the University of Trento in 2009 and 2011,
respectively. In 2016 he got a double PhD in
Computer Science from the Universities of Inns-
bruck and Trento. His research mainly focuses on
the development of communication protocols and
highly realistic simulation models for platooning.
He also worked on vehicular networking-based
safety application and a software defined radio
implementation of the IEEE 802.11p physical

layer. He volunteered in the organization of international conferences
such as VNC and WONS. Since April 2016 he is a Postdoctoral Research
Fellow with the Advanced Networking Systems group in Trento, led by
Prof. Renato Lo Cigno.

Christoph Sommer [M] (sommer@ccs-labs.org)
is an Assistant Professor (AkadR a.Z.) at Pader-
born University, joining the Distributed Embedded
Systems Group in 2014. He received his Ph.D.
degree in engineering (Dr.-Ing., with distinction)
and his M.Sc. degree in computer science (Dipl.-
Inf. Univ.) from the University of Erlangen in
2011 and 2006, respectively. In 2010, he was a
visiting scholar with the research group of Ozan K.
Tonguz at the Electrical and Computer Engineer-
ing Department of Carnegie Mellon University

(CMU). In 2012, he was a visiting scholar with the research group of Mario
Gerla at the Computer Science Department of the University of California,
Los Angeles (UCLA). Until 2014, he was a Postdoctoral Research Fellow
with the Computer and Communication Systems Group at the University
of Innsbruck. Since 2011, he is a member of the ACM/Springer Wireless
Networks (WINET) editorial board. Since 2016, he serves as area editor
for Elsevier Computer Communications (COMCOM). His research is
focused on questions regarding traffic efficiency, safety, and security
aspects of Car-to-X communication in heterogeneous environments. He
also authored the textbook Vehicular Networking, published in 2014 by
Cambridge University Press.

Falko Dressler [F] (dressler@ccs-labs.org) is
Full Professor for Computer Science and Chair
for Distributed Embedded Systems at the Heinz
Nixdorf Institute and the Dept. of Computer
Science, Paderborn University, where he is also
a member of the University Senate. Before
moving to Paderborn, he was a Full Professor at
the Institute of Computer Science, University of
Innsbruck and an Assistant Professor at the Dept.
of Computer Science, University of Erlangen. He
received his M.Sc. and Ph.D. degrees from

the Dept. of Computer Science, University of Erlangen in 1998 and
2003, respectively. Dr. Dressler is associate editor-in-chief for Elsevier
Computer Communications as well as an editor for journals such as
IEEE Trans. on Mobile Computing, Elsevier Ad Hoc Networks, and
Elsevier Nano Communication Networks. He has been guest editor of
special issues in IEEE Journal on Selected Areas in Communications,
IEEE Communications Magazine, Elsevier Ad Hoc Networks, and many
others. He has been chairing conferences such as IEEE INFOCOM,
ACM MobiSys, ACM MobiHoc, IEEE VNC, IEEE GLOBECOM, and many
others. He authored the textbooks Self-Organization in Sensor and Actor
Networks published by Wiley & Sons and Vehicular Networking published
by Cambridge University Press. He has been an IEEE Distinguished
Lecturer as well as an ACM Distinguished Speaker. Dr. Dressler is
an IEEE Fellow as well as a Senior Member of ACM, and member of
GI (German Computer Science Society). He also serves in the IEEE
COMSOC Conference Council. His research objectives include adaptive
wireless networking, self-organization techniques, and embedded system
design with applications in ad hoc and sensor networks, vehicular
networks, industrial wireless networks, and nano-networking.


	Introduction
	Related Work
	Concept and Implementation
	Overview
	Transmitter
	Receiver
	Frame Detection
	Symbol Alignment
	Frequency Offset Correction
	Channel Estimation
	Decoding


	Simulations
	Interoperability
	Computational Performance
	Time-Critical Functionality
	Automatic Gain Control
	Channel Access

	Field Test
	Transmit Performance
	Receive Performance

	Use Cases and Conclusion
	References
	Biographies
	Bastian Bloessl
	Michele Segata
	Christoph Sommer
	Falko Dressler


